Gap junction signalling is a stress-regulated component of adrenal neuroendocrine stimulus-secretion coupling in vivo.
نویسندگان
چکیده
Elucidating the mechanisms whereby neuroendocrine tissues coordinate their input and output signals to ensure appropriate hormone secretion is currently a topical issue. In particular, whether a direct communication mediated by gap junctions between neurosecretory cells contributes to hormone release in vivo still remains unknown. Here we address this issue using a microsurgical approach allowing combined monitoring of adrenal catecholamine secretion and splanchnic nerve stimulation in anaesthetised mice. Pharmacological blockade of adrenal gap junctions by the uncoupling agent carbenoxolone reduces nerve stimulation-evoked catecholamine release in control mice and to a larger extent in stressed mice. In parallel, the gap junction-coupled cell network is extended in stressed mice. Altogether, this argues for a significant contribution of adrenomedullary gap junctions to catecholamine secretion in vivo. As such, gap junctional signalling appears to be a substantial component for neuroendocrine function in the adrenal medulla, as it may represent an additional lever regulating hormone release.
منابع مشابه
Pituitary adenylate cyclase-activating peptide enhances electrical coupling in the mouse adrenal medulla.
Neuroendocrine adrenal medullary chromaffin cells receive synaptic excitation through the sympathetic splanchnic nerve to elicit catecholamine release into the circulation. Under basal sympathetic tone, splanchnic-released acetylcholine evokes chromaffin cells to fire action potentials, leading to synchronous phasic catecholamine release. Under elevated splanchnic firing, experienced under the ...
متن کاملSpatial and activity‐dependent catecholamine release in rat adrenal medulla under native neuronal stimulation
Neuroendocrine chromaffin cells of the adrenal medulla in rat receive excitatory synaptic input through anterior and posterior divisions of the sympathetic splanchnic nerve. Upon synaptic stimulation, the adrenal medulla releases the catecholamines, epinephrine, and norepinephrine into the suprarenal vein for circulation throughout the body. Under sympathetic tone, catecholamine release is mode...
متن کاملEffects of Type 1 and Type 2 Diabetes on Micro-Anatomical Changes of Adrenal Gland in Male Wistar Rats
Background & Aims: Changing the hormonal output of endocrine glands, diabetes leads to the occurrence of secondary metabolic disorders. Neuropathy, on the other hand, is the most common neurological complication of diabetes which affects the neuroendocrine system, in addition to peripheral and autonomic nervous system, contributing to exacerbation of disease severity. In this line, the present ...
متن کاملNeuronal gap junction coupling is regulated by glutamate and plays critical role in cell death during neuronal injury.
In the mammalian CNS, excessive release of glutamate and overactivation of glutamate receptors are responsible for the secondary (delayed) neuronal death following neuronal injury, including ischemia, traumatic brain injury (TBI), and epilepsy. The coupling of neurons by gap junctions (electrical synapses) increases during neuronal injury. We report here that the ischemic increase in neuronal g...
متن کاملConnexin-36 Gap Junctions Regulate In Vivo First- and Second-Phase Insulin Secretion Dynamics and Glucose Tolerance in the Conscious Mouse
Insulin is secreted from the islets of Langerhans in coordinated pulses. These pulses are thought to lead to plasma insulin oscillations, which are putatively more effective in lowering blood glucose than continuous levels of insulin. Gap-junction coupling of β-cells by connexin-36 coordinates intracellular free calcium oscillations and pulsatile insulin release in isolated islets, however a ro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature communications
دوره 4 شماره
صفحات -
تاریخ انتشار 2013